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Abstract 

Random walk hypothesis states that the stock market prices do not follow a predictable trajectory, but are simply random. If 

you are trying to predict a random set of data, one should test for randomness, because, despite the power and complexity of 

the used models, the results cannot be trustworthy.  

There are several methods for testing these hypotheses and the use of computational power provided by the R environment 

makes the work of the researcher easier and with a cost-effective approach. The increasing power of computing and the 

continuous development of econometric tests should give the potential investors new tools in selecting commodities and 

investing in efficient markets. 
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1. Introduction

When analyzing the market, there are two 

historical approaches. One theory is based on the 

randomness of the data and the other supports the 

predictability of the market, thus meaning a non-

random hypothesis. 

The random walk is an old concept, which can be 

traced back to 19th century, when the French broker 

Jules Regnault1 published his research in 1863. In 1900, 

Louis Bachelier2 wrote his PhD. Thesis on the same 

theory. The first use of random walk on stock market is 

attributed to Maurice Kendall3 and his paper from 1953. 

The history also records the test performed by the 

professor Burton G. Markiel4, when he demonstrated 

the randomness of the stock market using a flip coin to 

decide the growth of the closing price of an equity. 

There are also researchers that do not agree to the 

random walk hypothesis in predicting the market 

behavior. They state that the prices are somehow 

predictable and one could identify some trends 

analyzing the historical data. Many studies are 

presenting tests that support the predictability of the 

trends in the financial markets, like professors Andrew 

W. Lo and Archie Craig MacKinlay’s book5. 

Returning to the randomness approach, one 

cannot analyze the market without defining the market 

efficiency theory. According to Eugene Fama, the 

“father” of modern empirical finance, in his research 

“Random Walks in Stock Market Prices “he stated that 
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“in an efficient market, competition among the many 

intelligent participants leads to a situation where, at any 

point in time, actual prices of individual securities 

already reflect the effects of information based both on 

events that have already occurred and on events which 

as of now the market expects to take place in the future. 

In other words, in an efficient market at any point in 

time the actual price of a security will be a good 

estimate of its intrinsic value”. The idea that you cannot 

have a profit on an efficient market is not supported by 

all economists. Some stipulates that you can profit on 

such a market by selecting / buying leveraged ETFs 

(exchange trade funds). And, like almost always in 

trading, big risks can bring big winnings or big loses. 

Depending on how much information is taken 

into account when forming the current price, we can 

distingue weak, semi-strong and strong efficient 

markets. A week efficient market is the one which 

forms the price based on all historical prices. Semi-

strong markets bring intro the formation of the price all 

relevant and public available information. The strong 

form of the efficient market takes into account not only 

all the relevant information, but also even insider 

information, usually not publicly available. 

Usually, the market efficiency may be considered 

a by-product of market involvement of information 

arbitrageurs. These information arbitrageurs shall buy 

the assets that are supposed to be undervalued and sell 

the overvalued one. These agents may have some 

information that is scares of publicly not so accessible. 

By doing this, they may be considered to regulate the 
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price of the assets on that market and the new price 

should include also these sets of information known by 

these arbitrageurs. If the markets were perfectly 

efficient, the existence of the arbitrageurs would be 

unnecessary. Also, their actions are “boosted” by the 

existence of the noise traders. These so-called noise 

traders are the agents who trade based on other motives 

than new information (for example, an insurance 

company selling some stocks for paying a large claim). 

2. Random Walk Hypothesis 

The random walk hypothesis is a theory that 

stipulates the price of an equity should be described by 

a random walk, more specific a sub-martingale process. 

In probability theory, this martingale6 process (the term 

being first used by Ville, in 1939) is used to describe a 

fair game, in which the past events do not influence the 

outcome of the current winnings and only the present 

events matter.  

A weak efficient market can be regarded as a 

random model, because the historical price changes are 

reflected in the current price. So, this is an argument to 

test for randomness in the markets. Stuart Ride 

continues this idea and states that the market is only 

approximately random. If the market would be 

completely random, no one should invest. Investors 

should be somehow rewarded for their risk-taken 

actions of holding assets. There is the so-called market 

risk premium and is the reason that there are long term 

                                                 
6 Ville, Jean (1939). Étude critique de la notion de collectif. Monographies des Probabilités (in French). 3. Paris: Gauthier-Villars. Zbl 

0021.14601. 
7 http://www.turingfinance.com/testing-the-efficient-market-hypothesis-with-r/. 

investors who expect some gain. Stuart Ride explains 

the difference between a complete random market and 

the actual one in the Figure 1 below. In this graph, the 

investors are rewarded (the trand is ascending). The 

gray line is a compounded 126 day rolling average 

return, a so-called equity risk premium, the red line 

shows the compounded excess/residual return of the 

market, based on the calculations made by Ride. The 

gray line can be seen as the signal and the red one as a 

noise, or a Martingale process. Stuart Ride comes with 

4 ways of testing the random hypothesis: 

1. by predicting or finding statistically 

significant patterns in the so-called equity risk 

premium 

2. by predicting of or finding statistically 

significant patterns in the residuals 

3. by predicting of or finding statistically 

significant patterns in the sign of the residuals 

or in the rank 

4. by using non-parametric tests of randomness 

Stuard Ride7 sugests a different approach, 

meaning running all of the above tests on financial price 

time series. And this is only possible using dedicated 

software, like the R environment and the emh package. 

2.1. The importance of randomness tests 

Usually, when investing there are some already 

called classical approaches. First, MVO (mean variance 

portofolio optimisation) assumes that the prices are 

stationary random walks that can be completely 

determined by their first two moments.  

Figure 1 

Source: http://www.turingfinance.com/testing-the-efficient-market-hypothesis-with-r/ 
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The next approch is based on Monte Carlo 

simulations. These stochastic processes suppose to 

effectively model these totally random prices. 

On the market there are also high frequently 

traders or arbitrageurs who insist that the prices are far 

from random and patterns can be identified in the price 

formation in high frequencies. Also information 

scarcity can be used to anticipate the price trends. 

The fundamental analysts argue that in low 

frequency trading there is not a random price forming, 

but a strong correlation to the fundamental information 

about the company issuing the asset/comodity. Also 

there are the macroeconomic analysts, who also insist 

that in low frequency trading the economic factors do 

influence the prices, thus making them not random. 

Factors such business cicles can be recorded in the 

prices and making them predictible. 

The last, but not the least case is of the technical 

analysts. In this case, the prices and volumes are not 

random, but follow some significant patterns, more or 

less easy identifiable and exploitable by using 

deterministic indicators. 

3. Random Walk tests in R 

The emh package consists (in the 0.1.0 version) in 

6 tests: Wald – Wolfowitz runs test, Durbin – Watson 

test, Ljung – Box test, Breusch - Godfrey test, Bartell 

Rank - Based Variance Ratio test and Lo - Mackinlay 

Variance Ratio test. 

Test 1. The Wald – Wolfowitz runs test is one of 

the most used tests for randomness. It consists in 

indentifying the number of uninterrupted aequance of 

identical bits. In financial markets, we translate this 

series in moments of growth (1s) and moments of 

decrease in in price of an equity (0s). 

The runs test is defined as: 

H0: the sequence was produced in a random 

manner 

H1: the sequence was not produced in a random 

manner 

The statistic test is Z=(R−Ŕ)/sR 

where R is the observed number of runs, Ŕ is the 

expected number of runs, and sR is the standard 

deviation of the number of runs. The values of Ŕ and sR 

are computed as follows: 

Ŕ =
2𝑛1𝑛2
𝑛1 + 𝑛2

+ 1 

𝑠𝑅
2 =

2𝑛1𝑛2(2𝑛1𝑛2 − 𝑛𝑙 − 𝑛2)

(𝑛1 + 𝑛2)2(𝑛1 +𝑛2 −1)
 

with n1 and n2 denoting the number of positive 

and negative values in the series. 

Significance Level: α 

Critical Region: The runs test rejects the null 

hypothesis if |Z| > Z1-α/2. 

                                                 
8 Jula D., Jula N., 2017, MODELARE ECONOMICĂ. MODELE ECONOMETRICE ȘI DE OPTIMIZARE, Editura Mustang, Bucuresti. 

Test 2. The Durbin-Watson test (Durbin J., 

Watson G.S., 1950, 1951) is the most commonly used 

procedure for identifying first-order autocorrelation of 

errors in linear regression models. 

The test is  
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 where ut represent the residuals from the 

regression. 

In order to test the hypothesis8 H0: ρ = 0 (absence 

of error autocorrelation), the alternative H1: ρ ≠ 0 (the 

presence of the error autocorrelation phenomenon) the 

bilateral Durbin-Watson test is used. From the Durbin 

- Watson bilateral test tables, the critical values dL and 

dU are selected for k - the number of explanatory 

variables in the model and n - the size of the sample 

(starting from the significance level - usually 0.05 or 

0.01). 

 H0 hypothesis is accepted - no first-order 

autocorrelation, if DU ≤ dw ≤ 4 - dU 

 Reject H0 if dw ≤ dL or dw ≥ 4 - dU. 

 If dL ≤ dw ≤ dU or 4 - dU ≤ dw ≤ 4 - dL, the test 

is inconclusive. 

Test 3. Ljung – Box test, named after Greta Ljung 

and George Box, finds out if there is any significant 

autocorrelation in a time series. We should expect the 

autocorrelation when the financial series has a 

momentum or a mean-reversion. The test stars with the 

Ljung – Box statistic: 

𝑸 = 𝒏(𝒏 + 𝟐)∑
�̂�𝒌
𝟐

𝒏−𝒌

𝒉
𝒌=𝟏 , where 

 

N is the dimension of the series, �̂�𝒌
𝟐 is the 

autocorrelation of the series at k lag, h is the number of 

lags. Under the null hypothesis, the statistics follows a 

chi-squared distribution. 

Test 4. Breusch - Godfrey test is based on LM 

model and it is used to identify the autocorrelation in 

the errors in an econometric regression model. It is 

considered more powerful than Durbin – Watson tests 

(doesn’t have the drawbacks like identifying only 

AR1). 

The procedure consists in obtaining the residuals 

from the initial regression model. These residuals are 

forming a new regression: 

ut= α0 + α1Z1t + α2Z2t + … + αpZpt + εt 

The determination coefficient R2 is calculated for 

this new regression and the nR2 should follow a Chi 

squared distribution and the null hypothesis (there is no 

autocorrelation of any order) is rejected for nR2 > χ2. 

Test 5. Bartell Rank - Based Variance Ratio test 

is a version of the 1941’s John von Neumann Ration 

Test. This version doesn’t require anymore the property 
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of normal distribution of the series. The statistic test is 

calculated: 

𝑹𝑽𝑵 =
∑ (𝑹𝒊 −
𝒏−𝟏
𝒊=𝟏 𝑹𝒊−𝟏)

𝟐

∑ (𝑹𝒊 −
𝒏
𝒊=𝟏 (𝒏 + 𝟏)/𝟐)𝟐

 

Where Ri is the logarithmic return ri and n is the 

length of the series. Bartel demonstrated that the (RVN-

2)/σ follows a normal distribution, where  

𝝈𝟐 =
𝟒(𝒏 − 𝟐)(𝟓𝒏𝟐 − 𝟐𝒏 − 𝟗)

𝟓𝒏(𝒏 + 𝟏)(𝒏 − 𝟏)𝟐
 

Test 6. Lo - Mackinlay Variance Ratio9 test is 

used to identify the heteroskedasticity in a series. Not 

all financial series can be tested with this procedure. 

According to Reid, “the test is only valid if security 

price changes have finite variances”.  

EMH package in R 

To test the random walk hypothesis on financial 

data can be rather time consuming. The today’s 

technology allows the researcher to access a plethora of 

tools and the R environment proves once again that it is 

one of the leading source of utensils when dealing with 

statistic and econometric data. Each of the tests 

presented above are already implemented and can be 

used freely by everyone. The EMH package developed 

by Stuard Reid gathers these tests.  

This package can be downloaded or installed in 

R from GitHub: 

library(devtools) 

devtools::install_github(repo="stuartgordonreid/

emh") 

The test of randomness can be performed easily, 

using the following syntax: 

results<-emh::is_random(financial_data) 

emh::plot_results(results) 

View(results) 

4. Conclusions 

As Eugene Fama stated in his iconic article 

(Random Walks in Stock Market Prices), “If the 

random-walk theory is valid and if security exchanges 

are “efficient” markets, then stock prices at any point in 

time will represent good estimates of intrinsic or 

fundamental values. Thus, additional fundamental 

analysis is of value only when the analyst has new 

information which was not fully considered in forming 

current market prices, or has new insights concerning 

the effects of generally available information which are 

not already implicit in current prices. If the analyst has 

neither better insights nor new information, he may as 

well forget about fundamental analysis and choose 

securities by some random selection procedure.”. So, 

one interested in investing on a market should benefit 

from all the information he can get. Testing a market 

for random walk helps decide if it is worth the risk of 

investing. 

The future development of this research should 

focus on testing the model on emerging financial 

markets, like the Romanian one. The increasing power 

of computing and the continuous development of 

econometric tests should give the potential investors 

new tools in selecting and investing. 
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Annex 

One can perform the above tests from EMH package test by test in R. 

1. For The Wald – Wolfowitz runs test the syntax suggested by Stuard Reid is: 

test_runs <- function(rets, a = 0.99) { 

                                                 
9 Lo, Andrew W., and A. Craig MacKinlay. "Stock market prices do not follow random walks: Evidence from a simple specification test." 

Review of financial studies 1.1 (1988): 41-66. 
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# Check and convert the data. 

.check_data(data = rets) 

binrets <- as_binary(rets) 

# Get the numbers of bits. 

k <- length(binrets) 

k.ones <- count_ones(binrets) 

k.zeros <- count_zeroes(binrets) 

# Calculate the expectations. 

mean <- ((2 * k.ones * k.zeros) / k) + 1 

variance <- ((mean - 1) * (mean - 2)) / (k - 1) 

# Calculate the number of runs. 

k.runs <- test_runs_number(binrets) 

# Compute the z score of k.runs. 

z.score <- (k.runs - mean) / sqrt(variance) 

# Compute the p-value of the z-score. 

p.value <- pnorm(z.score) 

# Compute the required threshold. 

thresh <- abs(qnorm((1 - a) / 2)) 

# Return the results object. 

return(c(k.runs, p.value, z.score, 

abs(z.score) > thresh)) 

} 

 

2. The Durbin-Watson test syntax suggested by Stuard Reid is: 

test_durbinwatson <- function(rets, a = 0.99) { 

# Check and convert the data. 

.check_data(data = rets) 

rets <- as.numeric(rets) 

# Now construct the data frame. 

k <- length(rets) 

y.var <- tail(rets, k - 1) 

x.var <- head(rets, k - 1) 

data <- data.frame(y.var, x.var) 

# Use lmtest to compute the p-values. 

colnames(data) <- c("y", "x") 

# Fit the linear model. 

lmfit <- lm(formula = y ~ x, 

data = data) 

# Now compute the durbin-watson statistic. 

dw <- lmtest::dwtest(formula = lmfit, 

alternative = "two.sided") 

# Get the test statistic (D) for the test. 

stat <- dw$statistic 

# Get the p-value for the D statistic. 

p.value <- dw$p.value 

# Determins the Z-score. 

z.score <- qnorm(p.value) 

# Compute the required threshold. 

thresh <- abs(qnorm((1 - a) / 2)) 

# Return the results object. 

return(c(stat, p.value, z.score, 

abs(z.score) > thresh)) 

} 

 

3. Ljung – Box test syntax suggested by Stuard Reid is: 

test_ljungbox <- function(rets, a = 0.99, n.lags = 15) { 

# Number of lags. 

k <- length(rets) 

rets <- as.numeric(rets) 

# The denominator. 
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den <- k - seq(1, n.lags) 

# Compute the lagged autocorrelations. 

autocors <- c() 

for (l in 1:n.lags) { 

rets.head <- head(rets, k - l) 

rets.tail <- tail(rets, k - l) 

correl <- cor(rets.head, rets.tail) 

autocors <- c(autocors, correl) 

} 

 

4. Breusch - Godfrey test syntax suggested by Stuard Reid is: 

test_breuschgodfrey <- function(rets, a = 0.99) { 

# Check and convert the data. 

.check_data(data = rets) 

rets <- as.numeric(rets) 

# Now construct the data frame. 

k <- length(rets) 

y.var <- tail(rets, k - 1) 

x.var <- head(rets, k - 1) 

data <- data.frame(y.var, x.var) 

# Use lmtest to compute the p-values. 

colnames(data) <- c("y", "x") 

# Fit the linear model. 

lmfit <- lm(formula = y ~ x, 

data = data) 

# To compute the Beusch-Godfrey statistic. 

bg <- lmtest::bgtest(formula = lmfit) 

# Get the test statistic (D) for the test. 

stat <- bg$statistic 

# Get the p-value for the D statistic. 

p.value <- bg$p.value 

# Determins the Z-score. 

z.score <- qnorm(p.value) 

# Compute the required threshold. 

thresh <- abs(qnorm((1 - a) / 2)) 

# Return the results object. 

return(c(stat, p.value, z.score, 

abs(z.score) > thresh)) 

} 

 

5. Bartell Rank - Based Variance Ratio syntax suggested by Stuard Reid is: 

test_bartellrank <- function(rets, a = 0.99) { 

# Check and convert the data. 

.check_data(data = rets) 

rets <- as.numeric(rets) 

# Run the bartell's rank test in randtests. 

br <- randtests::bartels.rank.test(rets) 

# Get the test statistic (D) for the test. 

stat <- br$statistic 

# Get the p-value for the D statistic. 

p.value <- br$p.value 

# Determins the Z-score. 

z.score <- qnorm(p.value) 

# Compute the required threshold. 

thresh <- abs(qnorm((1 - a) / 2)) 

# Return the results object. 

return(c(stat, p.value, z.score, 

abs(z.score) > thresh)) 

} 
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6. Lo - Mackinlay Variance Ratio syntax is: 

- using vrtest package 

#Usage 

Lo.Mac(y, kvec) 

#Arguments 

#y a vector of time series, typically financial return 

#kvec a vector of holding periods 
 




