

LINEAR REGRESSION WITH R AND HADOOP

Bogdan OANCEA*

Abstract

In this paper we present a way to solve the linear regression model with R and Hadoop using the Rhadoop library. We

show how the linear regression model can be solved even for very large models that require special technologies. For storing

the data we used Hadoop and for computation we used R. The interface between R and Hadoop is the open source library

RHadoop. We present the main features of the Hadoop and R software systems and the way of interconnecting them. We then

show how the least squares solution for the linear regression problem could be expressed in terms of map-reduce programming

paradigm and how could be implemented using the Rhadoop library.

Keywords: R, Hadoop, Rhadoop, big data, linear regression.

1. Introduction

Hadoop is an open source software whose main

purpose is distributed processing of large data sets

using computer clusters (White, 2012). Hadoop is

developed in Java programming language and is a

middleware platform that runs on a cluster of

workstations. Applications using Hadoop platform can

be developed in Java and in other languages such as R,

Ruby or Python. Hadoop can be downloaded from

http://hadoop.apache.org. The Hadoop platform users

include companies like Yahoo! (Network 2014) or

Facebook (Vagata and Wilfong, 2014). Hadoop

system consists essentially of:

 Hadoop Distributed File System (HDFS) - a

high performance distributed file system;

 Hadoop YARN - a subsystem whose role is

scheduling jobs and computer cluster resource

management;

 Hadoop Map-Reduce - a system of parallel

processing for very large data sets that implements the

distributed Map Reduce programming model (Dean,

2004).

Briefly described, Hadoop is a software system

that provides its users with a highly reliable distributed

file system and a system of analysis and data

processing. Hadoop can be installed and run on both

clusters with several computers or on clusters with

thousands of computers, with a high fault tolerance

degree. Currently, Hadoop is a de-facto standard in

storing and processing large volumes of data and is

used by all major actors in software industry. Hadoop

system structure can be observed in Figure 1.

Figure 1. Hadoop and data analysis tools

HDFS file system is based on a client-server

architecture. It is a file system with high tolerance to

errors and is designed to be run on computers with

 Professor, PhD, Faculty of Economics, "Nicolae Titulescu" University of Bucharest (e-mail: bogdanoancea@univnt.ro).

limited resources. HDFS provides high speed data

access, making it ideal for applications that work with

large volumes of data, hundreds of GB or TB. HDFS

1008 Challenges of the Knowledge Society. IT in Social Sciences

file system is a "append only" system i.e. a file that was

created, populated with data and then closed cannot be

changed afterwards. This feature simplifies the way to

ensure consistency of data files. HDFS provides

facilities for bringing processing applications where

data is stored as it is more effective to migrate data

processing instructions than data. This reduces the data

traffic through the computer network interconnection

applications thus increasing efficiency

HDFS has a node acting as a server, called

NameNode that is run on a master server and one or

more DataNode type nodes (acting as clients)

managing data storage drives attached to these nodes

(computers) from the network (Ryan, 2012). The

NameNode aims to manage namespace of the HDFS

file system and perform operations of opening, closing

or rename files. Files that are saved by HDFS are

divided into several blocks of data that are stored by

one or more DataNode, responsible for carrying out

effective operations of read / write data. Mapping data

blocks on nodes is achieved by NameNode. Both

NameNode and DataNode application are written in

Java and can run on virtually any computer that

supports Java.

Hardware fault tolerance is achieved by

replicating data blocks on multiple computers. All files

are divided into equal-sized data blocks that are then

distributed to DataNode. A data block is copied to

multiple nodes, so if a node can not operate because of

a hardware failure, copies of data are available for

other nodes in the network. Over the HDFS distributed

file system runs a kernel that that implements the Map

Reduce programming model. It consists in a process

called JobTracker receiving from clients Map Reduce

jobs and schedule them for execution. The JobTracker

send processing (jobs) to processes running on the

TaskTracker nodes in the computer cluster, trying to

keep as close to the data processing that must be

processed. If a TaskTracker process does not respond

within a certain predetermined time or end with error

JobTracker will reschedule the respective processing.

Each TaskTracker process starts a Java virtual

machine for each job in part to avoid the TaskTracker

himself to finish its execution if the job to be executed

will lead to termination of the Java virtual machine in

case of error. JobTracker and TaskTracker

communicate periodically for system status update.

Hadoop system structure can be seen in Figure 2.

Figure 2. Software structure of the Hadoop system

R is a free software package for statistics and

data visualization (R Core Team, 2013). It is available

for several operating systems like UNIX, Windows

and MacOS platforms and is the result of the work of

many programmers from around the world. R contains

facilities for data handling, provides high performance

procedures for matrix computations, a large collection

of tools for data analysis, graphical functions for data

visualization and a straightforward programming

language. R comes with about 25 standard packages

and many more packages available for download

through the CRAN family of Internet sites

(http://CRAN.R-project.org). R is used as a

computational platform for regular statistics

production in many official statistics agencies

(Todorov, 2010), (Todorov, 2012). Besides official

statistics, it is used in many other sectors like finance,

retail, manufacturing, academic research etc., making

it a popular tool among statisticians and researchers.

Bogdan OANCEA 1009

2. Integration between R and Hadoop to

process large volumes of data

There is now a large number of R packages or

scripts for processing and data analysis. Their use with

Hadoop normally would require rewriting them in

Java, the natural language for Hadoop, but rewriting

activity can lead to many errors. Therefore it is more

effective to interface Hadoop ssytem with R so that we

they can work with scripts written in R and stored data

with Hadoop (Holmes, 2012). Another reason to build

an interface between R and Hadoop is that R loads data

into memory for processing which can be a serious

limitation in terms of the volume of the data.

There are several approaches to integrate R and

Hadoop: R and Streaming, Rhipe and RHadoop but in

this paper we will present only RHadoop.

RHadoop is an open source project developed by

Revolution Analytics

(http://www.revolutionanalytics.com/) that provides a

client-side integration between R and Hadoop. This

allows running Map Reduce jobs within R and consists

of a collection of several packages:

 plyrmr - provides plyr like processing functions

for structured data type, having capabilities of

handling large data sets stored with Hadoop;

 rmr - contains a collection of functions that

provide Map Reduce model implementation in R;

 rdfs - is an interface between R and HDFS,

providing file management operations in R for data

stored in HDFS;

 rhbase - is an interface between R and Hbase, and

provides management functions in R for Hbase

databases;

RHadoop Installation is very simple, although it

depends on other packages. In order to work with R

and RHadoop one have to install all depending

packages on each DataNode of the Hadoop cluster:

> install.packages("RJSONIO")

> install.packages("itertools")

> install.packages("digest”)

> install.packages("rJava")

> install.packages("Rcpp")

> install.packages("functional")

> install.packages("reshape2")

> install.packages("plyr")

> install.packages("caTools")

rmr package has to be installed from the the

archive that contains the source code:

>

install.packages("rmr2_3.1.1.tar.gz",repo=NULL,type

="source")

The other packages that make up RHadoop rdfs,

plyrmr, rhbase, are installed in a similar way.

3. Solving a linear regression using RHadoop

We will illustrate a method of using R with

Hadoop to estimate a linear regression model using

ordinary least squares method. There are other ways to

estimate linear regression models with R and Hadoop,

it all depends on the problem to be solved and

imagination of the analyst who solve the problem in

terms of translating to Map Reduce paradigm which is

typical Hadoop (Prajapati, 2013).

A linear regression model takes the following

form:

where yi is the dependent variable and xi a vector

(of dimension p) of regressors that are taken into

account (the explanatory variables are independent),

and ranges from 1 to n. The n equations can be put in

a matrix form:

Or, more simple, like that:

where β vector is the vector of parameters to be

estimated.

The ordinary least squares minimizes the sum of

squared residues. The calculation formula for

estimating vector β is Gujarati (1995) :

We have to compute a matrix matrix product XT

X, than to compute the inverse of the result, (XT X)-1.

Next we compute the matrix vector product XTy and

this is multiplied by the intermediate result (XT X)-1.

These computations are equivalent with solving a

linear system of equations:

XTX β = XTy

where XTX is the matrix of the linear system,

XTy is the free term and β is the unknown variable.

Solving this system is equivalent to the following

matrix operation:

β = (XTX)-1 XTy

In R there is a predefined function for such

problems (solving linear systems):

solve(a, b, ...).

This function takes two parameters: the matrix of

the system and free term. In our case we call this

function like this:

solve(XTX, XTy)

All you have to do is to calculate the transposed

matrix X and multiply it by X, then y.

Imagine that we solve the a problem with 20,000

observations (n = 20000) and 15 independent variables

1010 Challenges of the Knowledge Society. IT in Social Sciences

(xi). In this case the matrix X will have dimensions

(20000, 15) and y is the vector of size 20000. Assume

that a matrix A (20000, 15) can not be stored in the

memory of a single computer and the calculation of

transposition and multiplication can’t also be

performed by a single computer. Instead, the call of :

solve(XTX, XTy)

can be executed easily by one computer. Why? If

we try to calculate the dimension of the matrix XTX we

see that we have made a product between two matrices

of the following dimensions: (15, 20000) x (20000,

15) = (15, 15). That result is a matrix of size (15,15

) and is perfectly feasible that this result will be stored

and processed on a single computer. The size of the

mltiplication XTy is (15, 20000) x (20000, 1) = (15,1

). So, and it can be easily stored and processed on a

single computer.

What we propose is to use Hadoop to store input

data and to perform the two multiplications. The final

call solve (XTX, XTy) will be performed classically, on

a single computer.

We define the matrix X with random values (

following the normal distribution). The number of

elements of the matrix is 20000 x 15 = 300,000

X <- matrix(rnorm(300000), ncol=15)

We add a new column to the matrix X which will

contain the values 1, 2, 3 ... 20000 (number of rows of

the matrix X). We will see why we need this new

column.

X1 <- cbind(1:nrow(X), X)

Cbind function performs a column concatenation

of the two arguments. The result will be a matrix of

size (20000, 16) where the first column contains the

values 1, 2, 3, ... nrow (X).

We write the result in the HDFS distributed file

system :

X1 <- to.dfs(X1)

We define now the vector y (the elements of y

are all normally distributed random numbers):

y <- as.matrix(rnorm(20000))

So far we have defined the input data. In a real

application they come from files already stored in

HDFS.

We define the first map-reduce job in order to

calculate XTX product. First we write first the function

map:

mapper = function (., Xr) {

Xr = Xr[,-1]

#print(dim(Xr))

keyval(1, list(t(Xr) %*% Xr))

}

Here Xr [-1] means all rows and columns of the

matrix Xr less column 1. If you remember, column 1

contains the values 1, 2, 3, ... nrow (X).

The map function receives as input data blocks

consisting of whole rows of the matrix X. We note

such blocks with Xr. If during execution one wants to

see the Xr matrix dimmnesions uncomment the line

 #print (dim (Xr)).

On the computer where we tested the script,

mapper is called 3 times with the first 7810 rows of the

matrix X1, then the next 7811 rows and finally the last

4379 lines.

In this case we are not interested in the key that

the mapper receives. The operator %*% achieved

multiplication of two matrices. This function will

perform smaller submatrix products and will pass the

results to the reduce function that will add them up.

The function t(X) calculates the transposed of the

matrix X. If you analyze the classical algorithm for

multiplication of two matrices to calculate XTX you

will find tha onet can form smaller matrix (m rows of

the original matrix, with m <n, where n is the total

number rows) that you multiply and then assemble the

partial results. Therefore, the reducer function will be

responsible to collect the partial results issued by the

mapper:

reducer = function(., Y) {

 keyval(1, list(Reduce(’+’, Y))

}

For details on the function Reduce typie help

(Reduce) in an R console. This function is similar wtih

its counterparts from the LISP language.

So we will have:

XtX <- values(

 from.dfs(

mapreduce(

input = X1,

map = mapper,

reduce = reducer,

combine = T

)

)

)[[1]]

The mapreduce function will write the result as a

pair (key, value) in HDFS where it is accessed via

from.dfs (...). Function values (...) extracts only the

values of pairs (key, value).

We will compute XTy in a similar manner:

mapper2 = function (., Xr) {

 yr = y[Xr[,1],]

Xr = Xr[,-1]

keyval(1, list(t(Xr) %*% yr))

}

yr = y[Xr[,1],] retains from the vector y only the

corresponding elements of the lines of matrix Xr.

Hadoop will call the mapper with blocks of rows of the

original matrix X and we need to select the same rows

from y. For this we have introduced new column in X

(see instructions X1 <- cbind (1: nrow (X), X)).

Xty <- values(

 from.dfs(

Bogdan OANCEA 1011

mapreduce(

input = X1,

map = mapper2,

reduce = reducer,

combine = T

)

)

)[[1]]

We used the parameter combine = T to combine

all pairs (key, value) because mapper emits a single

key (1).

Finally we call solve:

solve(XtX, Xty)

The whole R script tha solves the linear

regression problem is given in figure 3.

Figure 3. An R script that solves the linear

regresion model using Rhadoop

#!/usr/bin/Rscript

library(rmr2)

X <- matrix(rnorm(300000), ncol=15)

X1 <- cbind(1:nrow(X), X)

X1 <- to.dfs(X1)

y <- as.matrix(rnorm(20000))

mapper = function (., Xr) {

 Xr <- Xr[,-1]

 #print(dim(Xr))

 keyval(1, list(t(Xr) %*% Xr))

}

reducer = function(., A) {

 keyval(1, list(Reduce('+', A)))

}

mapper2 = function (., Xr) {

 yr <- y[Xr[,1],]

 Xr <- Xr[,-1]

 keyval(1, list(t(Xr) %*% yr))

}

XtX <- values(

 from.dfs(

 mapreduce(

 input = X1,

 map = mapper,

 reduce = reducer,

 combine = T

)

)

)[[1]]

Xty <- values(

 from.dfs(

 mapreduce(

 input = X1,

 map = mapper2,

 reduce = reducer,
 combine = T

)

)

)[[1]]

beta <- solve(XtX, Xty)

beta

4. Conclusions

One of the software tools successfully used for

storage and processing of big data sets on clusters of

commodity hardware is Hadoop that have become a

de-facto standard in big data storage. On the other

hand, R is currently used on a large scale for data

processing. Interfacing Hadoop and R seems to be the

future of big data processing. In this paper we showed

how we can solve a linear regression probem using

Hadoop and R for very large problems. The algorithm

for solving the problem of linear regression has been

transformed so that it can use the map-reduce

programming model which is psecific to Hadoop.

1012 Challenges of the Knowledge Society. IT in Social Sciences

References

 Dean, J. and S. Ghemawat (2004). Mapreduce: Simplified data processing on large clusters. In

OSDI’04, 6th Symposium on Operating Systems Design and Implementation, pp. 137–150.

USENIX, in cooperation with ACM SIGOPS.

 Gujarati, D. N. (1995). Basic Econometrics (Third ed.). McGraw Hill.

 Holmes, A. (2012). Hadoop in practice. Manning Publications, New Jersey.

 Network, Y. D. (2014). Hadoop at yahoo! use!R 2007 Conference, Iowa State University.

http://developer.yahoo.com/hadoop/.

 Prajapati, V. (2013). Big Data Analytics with R and Hadoop. Packt Publishing.

 White, T. (2012). Hadoop: The Definitive Guide, 3rd Edition. O’Reilly Media.

 R Core Team, (2013), An Introduction to R, available at http://www.r-project.org/, accessed on 25th

March 2014.

 Ryan, A., (2012), Under the Hood: Hadoop Distributed Filesystem reliability with Namenode and

Avatarnode, available at http://www.facebook.com/notes/facebook-engineering/under-the-hood-

hadoop-distributed-filesystem-reliability-with-namenode-and-avata/10150888759153920, last

accessed on 25th February, 2015.

 Vagata, P. şi K. Wilfong (2014). Scaling the facebook data warehouse to 300 PB. Available as

 https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb.

 Todorov, V. and M. Templ, (2012), R in the statistical office: Part 2, Development, policy, statistics

and research branch working paper 1/2012., United Nations Industrial Development, 2012.

 Todorov, V., (2010), R in the statistical office: The UNIDO experience. Working Paper 03/2010,

United Nations Industrial Development. Available at: http://www.unido.org/fileadmin/user_media/

Services/Research_and_Statistics/statistics/WP/WP_2010_03.pdf, accessed on 25th February 2015.

