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Abstract 

In this paper we present a way to solve the linear regression model with R and Hadoop using the Rhadoop library. We 

show how the linear regression model can be solved even for very large models that require special technologies. For storing 

the data we used Hadoop and for computation we used R. The interface between R and Hadoop is the open source library 

RHadoop. We present the main features of the Hadoop and R software systems and the way of interconnecting them. We then 

show how the least squares solution for the linear regression problem could be expressed in terms of map-reduce programming 

paradigm and how could be implemented using the Rhadoop library. 
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1. Introduction 

Hadoop is an open source software whose main 

purpose is distributed processing of large data sets 

using computer clusters (White, 2012 ). Hadoop is 

developed in Java programming language and is a 

middleware platform that runs on a cluster of 

workstations. Applications using Hadoop platform can 

be developed in Java and in other languages such as R, 

Ruby or Python. Hadoop can be downloaded from 

http://hadoop.apache.org. The Hadoop platform users 

include companies like Yahoo! (Network 2014) or 

Facebook (Vagata and Wilfong, 2014). Hadoop 

system consists essentially of: 

 Hadoop Distributed File System ( HDFS )  - a 

high performance distributed file system; 

 Hadoop YARN - a subsystem whose role is 

scheduling jobs and computer cluster resource 

management; 

 Hadoop Map-Reduce - a system of parallel 

processing for very large data sets that implements the  

distributed Map Reduce programming model ( Dean, 

2004 ). 

Briefly described, Hadoop is a software system 

that provides its users with a highly reliable distributed 

file system and a system of analysis and data 

processing. Hadoop can be installed and run on both 

clusters with several computers or on clusters with 

thousands of computers, with a high fault tolerance 

degree. Currently, Hadoop is a de-facto standard in 

storing and processing large volumes of data and is 

used by all major actors in software industry. Hadoop 

system structure can be observed in Figure 1. 

 

Figure 1. Hadoop and data analysis tools 

 
 

HDFS file system is based on a client-server 

architecture. It is a file system with high tolerance to 

errors and is designed to be run on computers with 
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limited resources. HDFS provides high speed data 

access, making it ideal for applications that work with 

large volumes of data, hundreds of GB or TB. HDFS 
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file system is a "append only" system i.e. a file that was 

created, populated with data and then closed cannot be 

changed afterwards. This feature simplifies the way to 

ensure consistency of data files. HDFS provides 

facilities for bringing processing applications where 

data is stored as it is more effective to migrate data 

processing instructions than data. This reduces the data 

traffic through the computer network interconnection 

applications thus increasing efficiency 

HDFS has a node  acting as a server, called 

NameNode that  is run on a master server and one or 

more DataNode type nodes (acting as clients)  

managing data storage drives attached to these nodes 

(computers) from the network  ( Ryan, 2012 ). The 

NameNode aims to manage namespace of the HDFS 

file system and perform operations of opening, closing 

or rename files. Files that are saved by HDFS are 

divided into several blocks of data that are stored by 

one or more DataNode, responsible for carrying out 

effective operations of read / write data. Mapping data 

blocks on nodes is achieved by NameNode. Both 

NameNode and DataNode application are written in 

Java and can run on virtually any computer that 

supports Java. 

Hardware fault tolerance is achieved by 

replicating data blocks on multiple computers. All files 

are divided into equal-sized data blocks that are then 

distributed to DataNode. A data block is copied to 

multiple nodes, so if a node can not operate because of 

a hardware failure, copies of data are available for 

other nodes in the network. Over the HDFS distributed 

file system runs a kernel that that implements the Map 

Reduce programming model. It consists in a process 

called JobTracker receiving from clients Map Reduce 

jobs and schedule them for execution. The JobTracker 

send processing (jobs) to processes running on the 

TaskTracker nodes in the computer cluster, trying to 

keep as close to the data processing that must be 

processed. If a TaskTracker process does not respond 

within a certain predetermined time or end with error 

JobTracker will reschedule the respective processing. 

Each TaskTracker process starts a Java virtual 

machine for each job in part to avoid the TaskTracker 

himself to finish  its execution if the job to be executed 

will lead to termination of the Java virtual machine in 

case of error. JobTracker and TaskTracker 

communicate periodically for system status update. 

Hadoop system structure can be seen in Figure 2. 

Figure 2. Software structure of the Hadoop system 

 
 

R is a free software package for statistics and 

data visualization (R Core Team, 2013). It is available 

for several operating systems like UNIX, Windows 

and MacOS platforms and is the result of the work of 

many programmers from around the world. R contains 

facilities for data handling, provides high performance 

procedures for matrix computations, a large collection 

of tools for data analysis, graphical functions for data 

visualization and a straightforward programming 

language. R comes with about 25 standard packages 

and many more packages available for download 

through the CRAN family of Internet sites 

(http://CRAN.R-project.org). R is used as a 

computational platform for regular statistics 

production in many official statistics agencies 

(Todorov, 2010), (Todorov, 2012). Besides official 

statistics, it is used in many other sectors like finance, 

retail, manufacturing, academic research etc., making 

it a popular tool among statisticians and researchers.  
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2. Integration between R and Hadoop to 

process large volumes of data 

There is now a large number of R packages or 

scripts for processing and data analysis. Their use with 

Hadoop normally would require rewriting them in 

Java, the natural language for Hadoop, but rewriting 

activity can lead to many errors. Therefore it is more 

effective to interface Hadoop ssytem with R so that we 

they can work with scripts written in R and stored data 

with Hadoop  (Holmes, 2012). Another reason to build 

an interface between R and Hadoop is that R loads data 

into memory for processing which can be a serious 

limitation in terms of the volume of the data. 

There are several approaches to integrate R and 

Hadoop: R and Streaming, Rhipe and RHadoop but in 

this paper we will present only RHadoop.  

RHadoop is an open source project developed by 

Revolution Analytics 

(http://www.revolutionanalytics.com/) that provides a 

client-side integration between R and Hadoop. This 

allows running Map Reduce jobs within R and consists 

of a collection of several packages: 

 plyrmr - provides plyr like processing functions 

for structured data type, having capabilities of 

handling large data sets stored with Hadoop; 

 rmr - contains a collection of functions that 

provide Map Reduce model implementation in R; 

 rdfs - is an interface between R and HDFS, 

providing file management operations in R for data 

stored in HDFS; 

 rhbase - is an interface between R and Hbase, and 

provides management functions in R for Hbase 

databases; 

RHadoop Installation is very simple, although it 

depends on other packages. In order to work with R 

and RHadoop one have to install all depending 

packages on each DataNode of the Hadoop cluster: 

 

> install.packages("RJSONIO") 

> install.packages("itertools") 

> install.packages("digest”) 

> install.packages("rJava") 

> install.packages("Rcpp") 

> install.packages("functional") 

> install.packages("reshape2") 

> install.packages("plyr") 

> install.packages("caTools") 

 

rmr package has to be installed from the the 

archive that contains the source code: 

 

> 

install.packages("rmr2_3.1.1.tar.gz",repo=NULL,type

="source") 

 

The other packages that make up RHadoop rdfs, 

plyrmr, rhbase, are installed in a similar way. 

3. Solving a linear regression using RHadoop 

We will illustrate a method of using R with 

Hadoop to estimate a linear regression model using 

ordinary least squares method. There are other ways to 

estimate linear regression models with R and Hadoop, 

it all depends on the problem to be solved and 

imagination of the analyst who solve the problem in 

terms of translating to Map Reduce paradigm which is 

typical Hadoop (Prajapati, 2013). 

A linear regression model takes the following 

form: 

 
where yi is the dependent variable and xi a vector 

( of dimension p) of regressors that are taken into 

account (the explanatory variables are independent), 

and ranges from 1 to n. The n equations can be put in 

a matrix form: 

 

 
Or, more simple, like that: 

 
where β vector is the vector of parameters to be 

estimated.  

The ordinary least squares minimizes the sum of 

squared residues. The calculation formula for 

estimating vector β is Gujarati (1995) : 

 
We have to compute a matrix matrix product XT 

X, than to compute the inverse of the result, (XT X)-1. 

Next we compute the matrix vector product XTy and 

this is multiplied by the intermediate result (XT X)-1. 

These computations are equivalent with solving a 

linear system of equations: 

XTX β = XTy 

where XTX is the matrix of the linear system, 

XTy is the free term and β is the unknown variable. 

Solving this system is equivalent to the following 

matrix operation: 

β  =  (XTX)-1 XTy 

In R there is a predefined function for such 

problems (solving linear systems):  

solve(a, b, ...). 

This function takes two parameters: the matrix of 

the system and free term. In our case we call this 

function like this: 

solve(XTX, XTy) 

All you have to do is to calculate the transposed 

matrix X and multiply it by X, then y. 

Imagine that we solve the a problem with 20,000 

observations (n = 20000) and 15 independent variables 
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( xi ). In this case the matrix X will have dimensions 

(20000, 15) and y is the vector of size 20000. Assume 

that a matrix A (20000, 15) can not be stored in the 

memory of a single computer and the calculation of 

transposition and multiplication can’t also be 

performed by a single computer. Instead, the call of : 

solve(XTX, XTy) 

can be executed easily by one computer. Why? If 

we try to calculate the dimension of the matrix XTX we 

see that we have made a product between two matrices 

of the following dimensions: ( 15, 20000 ) x ( 20000, 

15 ) = ( 15, 15 ). That result is a matrix of size ( 15,15 

) and is perfectly feasible that this result will be stored 

and processed on a single computer. The size of the 

mltiplication XTy is ( 15, 20000 ) x ( 20000, 1 ) = ( 15,1 

). So, and it can be easily stored and processed on a 

single computer. 

What we propose is to use Hadoop to store input 

data and to perform the two multiplications. The final 

call solve (XTX, XTy) will be performed classically, on 

a single computer. 

We define the matrix X with random values ( 

following the normal distribution ). The number of 

elements of the matrix is 20000 x 15 = 300,000 

X <- matrix( rnorm(300000), ncol=15 ) 

We add a new column to the matrix X which will 

contain the values 1, 2, 3 ... 20000 (number of rows of 

the matrix X ). We will see why we need this new 

column. 

X1 <- cbind(1:nrow(X), X) 

Cbind function performs a column concatenation 

of the two arguments. The result will be a matrix of 

size ( 20000, 16 ) where the first column contains the 

values 1, 2, 3, ... nrow (X). 

We write the result in the HDFS distributed file 

system : 

X1 <- to.dfs(X1) 

We define now the vector y ( the elements of y 

are all normally distributed random numbers ): 

y <- as.matrix( rnorm( 20000 )) 

So far we have defined the input data. In a real 

application they come from files already stored in 

HDFS. 

We define the first map-reduce job in order to 

calculate XTX product. First we write first the  function 

map: 

mapper = function (., Xr) { 

Xr = Xr[,-1] 

#print(dim(Xr)) 

keyval(1, list(t(Xr) %*% Xr)) 

} 

 

Here Xr [ -1] means all rows and columns of the 

matrix Xr less column 1. If you remember, column 1 

contains the values 1, 2, 3, ... nrow (X). 

The map function receives as input data blocks 

consisting of whole rows of the matrix X. We note 

such blocks with Xr. If during execution one wants to 

see the Xr matrix dimmnesions uncomment the line 

 

 #print (dim (Xr)).  

 

On the computer where we tested the script, 

mapper is called 3 times with the first 7810 rows of the 

matrix X1, then the next 7811 rows and finally the last 

4379 lines. 

In this case we are not interested in the key that 

the mapper receives. The operator %*% achieved 

multiplication of two matrices. This function will 

perform smaller submatrix products and will pass the 

results to the reduce function that will add them up. 

The function t(X) calculates the transposed of the 

matrix X. If you analyze the classical algorithm for 

multiplication of two matrices to calculate XTX you 

will find tha onet can form smaller matrix (m rows of 

the original matrix, with m <n, where n is the total 

number rows) that you multiply and then assemble the 

partial results. Therefore, the reducer function will be 

responsible to collect the partial results issued by the 

mapper: 

reducer = function(., Y) { 

 keyval(1, list(Reduce(’+’, Y)) 

} 

 

For details on the function Reduce typie help 

(Reduce) in an R console. This function is similar wtih 

its counterparts from the LISP language. 

So we will have: 

 

XtX <- values( 

  from.dfs(  

mapreduce(  

input = X1,  

map = mapper,  

reduce = reducer,  

combine = T 

) 

) 

)[[1]] 

 

The mapreduce function will write the result as a 

pair (key, value) in HDFS where it is accessed via 

from.dfs (...). Function values (...) extracts only the 

values of pairs (key, value). 

We will compute XTy in a similar manner: 

 

mapper2 = function (., Xr) { 

 yr = y[Xr[,1],] 

Xr = Xr[,-1] 

keyval(1, list(t(Xr) %*% yr)) 

} 

yr = y[Xr[,1],] retains from the vector y only the 

corresponding elements of the lines of matrix Xr. 

Hadoop will call the mapper with blocks of rows of the 

original matrix X and we need to select the same rows 

from y. For this we have introduced new column in X 

(see instructions X1 <- cbind (1: nrow (X), X)). 

 

Xty <- values( 

  from.dfs(  
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mapreduce(  

input = X1,  

map = mapper2,  

reduce = reducer,  

combine = T 

) 

) 

)[[1]] 

 

We used the parameter combine = T to combine 

all pairs (key, value) because mapper emits a single 

key (1). 

Finally we call solve: 

 

solve(XtX, Xty) 

 

The whole R script tha solves the linear 

regression problem is given in figure 3.  

Figure 3. An R script that solves the linear 

regresion model using Rhadoop 

#!/usr/bin/Rscript 

library(rmr2) 

X <- matrix(rnorm(300000), ncol=15) 

X1 <- cbind(1:nrow(X), X) 

X1 <- to.dfs(X1) 

y <- as.matrix(rnorm(20000)) 

 

mapper = function (., Xr) { 

    Xr <- Xr[,-1] 

    #print(dim(Xr)) 

    keyval(1, list(t(Xr) %*% Xr)) 

} 

 

reducer = function(., A) { 

    keyval(1, list(Reduce('+', A))) 

} 

 

mapper2 = function (., Xr) { 

    yr <- y[Xr[,1],] 

    Xr <- Xr[,-1] 

    keyval(1, list(t(Xr) %*% yr)) 

} 

 

XtX <- values( 

    from.dfs(  

     mapreduce(  

         input = X1,  

     map = mapper,  

     reduce = reducer,  

     combine = T 

 ) 

    ) 

)[[1]] 

 

Xty <- values( 

    from.dfs(  

 mapreduce(  

         input = X1,  

     map = mapper2,  

     reduce = reducer,  
     combine = T 

 ) 

    ) 

)[[1]] 

 

beta <- solve(XtX, Xty) 

beta 

4. Conclusions 

One of the software tools successfully used for 

storage and processing of big data sets on clusters of 

commodity hardware is Hadoop that have become a 

de-facto standard in big data storage. On the other 

hand, R is currently used on a large scale for data 

processing. Interfacing Hadoop and R seems to be the 

future of big data processing. In this paper we showed 

how we can solve a linear regression probem using 

Hadoop and R for very large problems. The algorithm 

for solving the problem of linear regression has been 

transformed so that it can use the map-reduce 

programming model which is psecific to Hadoop.  
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