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Abstract 
Economic forecasting is a dynamic domain. New methods are developed and tested and the methodology needs 
to be updated according to economic reality. Classical approach in methodology must be completed with latest 
trends in econometric analysis and the forecasting methods have to benefit from the increasing computational 
power of the modern software. One of the main causes of false prediction is using altered data. In this paper, we 
will present the new concepts for data testing, adjusted for the Romanian economy, based on Benford's law. 
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1. Introduction 
For creating reliable econometric model, one must rely on existing data. There are many 

situations when the models and the obtained results are not useful because of the initial data. The 
altered data sets may create false signals and the conclusions based on these signals are not in 
accordance with the economic reality. 

For example, we have analyzed in the papers signals of political inferences in economy in 
order to manipulate the voters for increasing the chances of reelections. These models were based 
also on data provided by authorities, data related to final results in parliamentary or presidential 
elections. Now, we are testing the data form parliamentary elections in Romania from December, the 
9th, 2012. 

There are numerous useful methods that can be conducted in data analysis in order to check 
data correctness and authenticity. One of contemporary and efficient method is application of so-
called Benford's Law. 

Why using Bendfor's Law? In 1972, Hal Varian suggested that the law could be used to detect 
possible fraud in lists of socio-economic data submitted in support of public planning decisions. 
Based on the plausible assumption that people who make up figures tend to distribute their digits 
fairly uniformly, a simple comparison of first-digit frequency distribution from the data with the 
expected distribution according to Benford's law ought to show up any anomalous results. Benford's 
law is used extensively in United States in legal status issues, election data, macroeconomic reported 
data and other scientific fraud detection algorithms. 

 
2. Benford's Law – from random numbers to political fraud 
 
2.1. Benford's law  
Benford's law has its origins in the study of American astronomer Simon Newcomb, who 

observed that in logarithm tables (used at that time to perform calculations) the earlier pages (which 
contained numbers that started with 1) were much more worn than the other pages. Newcomb's 
published result is the first known instance of this observation and includes a distribution on the 
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The specific literature acknowledge that there is an overabundance of ways of tampering with 
election outcomes (for instance, the redrawing of district boundaries known as gerrymandering or the 
barring of certain demographics from their right to vote, blocking access to voting locations). Some 
practices of manipulating voting results leave traces, which may be detected by statistical methods. 
Recently, Benford’s law experienced a new start as a potential election fraud detection tool. In its 
original and naive formulation, Benford’s law is the observation that, for many real world processes, 
the logarithm of the first significant digit is uniformly distributed. Deviations from this law may 
indicate that there are chances of data to be incorrect. For instance, suppose a significant number of 
reported vote counts in districts is completely made up and invented by someone preferring to pick 
numbers, which are multiples of 10. The digit 0 would then occur much more often as the last digit in 
the vote counts compared with uncorrupted numbers. Voting results from Russia3, Germany4, 
Argentina5, and Nigeria6 have been tested for the presence of election fraud using variations of this 
idea of digit-based analysis. There are also analysts who stipulate that the validity of Benford’s law 
as a fraud detection method is subject to controversy. Peter Klimeka suggests that “the problem is 
that one needs to firmly establish a baseline of the expected distribution of digit occurrences for fair 
elections. Only then it can be asserted if actual numbers are over- or underrepresented and thus, 
suspicious. What is missing in this context is a theory that links specific fraud mechanisms to 
statistical anomalies7.” 

Walter Mebane8 supports the idea of using Benford’s law: “why should Benford’s Law apply 
to vote count data?” He offers two mechanisms for why second digits of vote counts should follow a 
“Benford’s Law-like distribution” which he refers to as the 2BL distribution. As stated above, 
Benford’s Law does not apply to “simple random” data. Therefore, in order for Benford’s Law to 
apply to vote count data vote count data cannot be generated simply randomly. Instead, due to the 
complexity inherent in the voting process, simple randomness should not be observed in voting 
outcomes. Thus, vote choice is not simply a “stochastic choice”, but rather consists of a set of 
complex processes. Such processes are as follows. An individual voter first decides whether or not to 
vote and, secondly, who to vote for (or also which way to vote on a particular referendum). Finally, a 
voter must actually cast his or her ballot which can be done in a variety of ways: “election day voting 
in person, early voting, provisional ballots or mail-in ballots; on paper, with machine assistance or 
using some combination”. In addition, there is always the potential for mistakes:  

When all is said and done, most voters will look at each option on the ballot and have firm 
intentions either to select that option or not to select that option. Then for whatever reason—
momentary confusion, bad eyesight, defective voting technology—a small proportion of those 
intended votes will not be cast or recorded correctly. A small proportion will be “mistakes” 
(Mebane).  

The combination of the potential for mistakes and the set of complex processes produce vote 
counts that should “or will often” follow the 2BL distribution as laid out in Table 1. According to 

                                                 
3 Mebane WR, Kalinin K (2009) Comparative Election Fraud Detection. (The American Political Science 

Association, Toronto, ON, Canada). 
4 Breunig C, Goerres A (2011) Searching for electoral irregularities in an established democracy: Applying 

Benford’s Law tests to Bundestag elections in unified Germany. Elect Stud 30:534–545. 
5 Cantu F, Saiegh SM (2011) Fraudulent democracy? An analysis of Argentina’s infamous decade using 

supervised machine learning. Polit Anal 19:409–433. 
6 Beber B, Scacco A (2012) What the numbers say: A digit-based test for election fraud. Polit Anal 20:211–

234. 
7 Deckert JD, Myagkov M, Ordeshook PC (2011) Benford’s Law and the detection of election fraud. Polit 

Anal 19:245–268. 
8 Mebane, Walter R., Jr. 2006b. “Election Forensics: The Second-digit Benford’s Law Test and Recent 

American Presidential Elections.” Earlier version presented at the Election Fraud Conference, Salt Lake City, Utah, 
September 29-30, 2006.   
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Mebane, “the kind of complexity that can produce counts with digits that follow Benford’s Law 
refers to processes that are statistical mixtures (e.g., Janvresse and de la Rue 2004), which means that 
random portions of the data come from different statistical distributions” (Mebane).  

Mebane uses simulations to show that when manipulations occur to 2BL distributed vote 
counts, this “will produce a significantly large value” of the test statistics. He shows that the test 
statistic is sensitive to departures from the 2BL distribution under a variety of scenarios: (1) when 
electoral manipulation occurs in a precinct for an already strong candidate; (2) when vote counts are 
manipulated in a close election (tie is expected according to the vote-generating process); and (3) 
when votes are manipulated in a precinct for a weak candidate. In addition, he shows that even small 
manipulations will produce significance (i.e. test statistic is sensitive to small manipulations). In 
other words, a massive amount of fraud does not have to occur for this test to detect fraud. However, 
“if the amount of manipulation is sufficiently small, the 2BL test will not signal that manipulation 
has occurred”  

We have analyzed the data from parliamentary elections from 9th December, 2012. The 
selected data was from the official results published by Central Electoral Bureau (Biroul Electoral 
Central – BEC) – Final results – Per candidate statistics9. 

First analysis was made using the whole set of data, counting 8120 records. The data was 
recorded per electoral circumscriptions (41 counties, Bucharest with 6 districts and voters from 
abroad). We were looking into the column of "Obtained votes per candidate" and we are searching 
for differences from the Benford's law. 

 
The tests included 3 phases: 
• First digit distribution 
• Second digit distribution 
• First 2 digits distribution 
 
For all these distributions, we were using also the chi-square test, which is used to determine 

whether there is a significant difference between the expected frequencies and the observed 
frequencies in one or more categories. Here, we were testing if the observed distribution differs 
significantly from the Benford's law predicted distribution. 

 
2.2.1. First digit distribution 
 

Digit Sample 
Frequency 

Benford 
Rate 

Sample Data 
Rate Difference 

1 2642 30.103% 32.585% 0.02482102 
2 1498 17.609% 18.476% 0.00866454 
3 1083 12.494% 13.357% 0.00863304 
4 725 9.691% 8.942% -0.00749215 
5 583 7.918% 7.190% -0.00727695 
6 459 6.695% 5.661% -0.01033603 
7 420 5.799% 5.180% -0.00619126 
8 360 5.115% 4.440% -0.00675193 
9 338 4.576% 4.169% -0.00407027 

 
Table 1 – First digit test 

                                                 
9 http://www.becparlamentare2012.ro/A-DOCUMENTE/Statistici/RezultateCandidati2012.xls  
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ChiTest: 100.00% 
 
 

 
Figure 6 – First two digits distribution 

 
Conclusions: The values starting with 1, 2 and 3 seem to have a slight value above expected 

distribution. All other starting digit pairs are under expected frequencies. This can suggest a possible 
data alteration (example: for a candidate with 24xx vote to 23xx or 25xx). The hypothesis is 
unstained by the Chi Square test. 

 
3. Conclusions  
Using Benford's law to discover data manipulation in the final results of the parliamentary 

elections from December, 2012, we can conclude that the data are validated. No important signs of 
abnormal distribution were detected. 

As a further analysis, we recommend the analysis of the data using more fraud detection 
methods. This method is not exhaustive, as some economist suggest. This is not a perfect validation 
tool, is more like a test. If the data is in a category which supposed to obey Benford's law (like 
election data) and it fails, there is a signal of possible fraud. If the test is passed, doesn't mean the 
data is automatically validated, but more tests are always recommended to increase the confidence 
level. 
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