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Abstract 
Parallel computing can offer an enormous advantage regarding the performance for very large applications in 
almost any field: scientific computing, computer vision, databases, data mining, and economics. GPUs are high 
performance many-core processors that can obtain very high FLOP rates. Since the first idea of using GPU for 
general purpose computing, things have evolved and now there are several approaches to GPU programming: 
CUDA from NVIDIA and Stream from AMD. CUDA is now a popular programming model for general purpose 
computations on GPU for C/C++ programmers. A great number of applications were ported to CUDA 
programming model and they obtain speedups of orders of magnitude comparing to optimized CPU 
implementations. In this paper we present an implementation of a library for solving linear systems using the C-
CUDA framework. We present the results of performance tests and show that using GPU one can obtain 
speedups of about of approximately 80 times comparing with a CPU implementation. 
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Introduction 
Parallel computing can offer an enormous advantage regarding the performance for very large 

applications in almost any field: scientific computing, computer vision, databases, data mining, and 
economics. GPUs are high performance many-core processors that can obtain very high FLOP rates. 
Since the first idea of using GPU for general purpose computing, things have evolved and now there 
are several approaches to GPU programming: CUDA from NVIDIA and Stream from AMD. CUDA 
is now a popular programming model for general purpose computations on GPU for C/C++ 
programmers. A great number of applications were ported to CUDA programming model and they 
obtain speedups of orders of magnitude comparing to optimized CPU implementations. 

Mark Harris1recognized for the first time the potential of using graphical processing units 
(GPU) for general purpose applications. Since then GPU programming models have evolved and 
there are several approaches to GPU programming now: CUDA (Compute Unified Device 
Architecture) from NVIDIA and APP (Stream) from AMD. A new standard OpenCL (Open 
Computing Language)2 tries to unify different GPU general computing API implementations and to 
provide a general framework for writing programs executed across heterogeneous platforms 
consisting of both CPUs and GPUs.  

In this paper will we use C-CUDA extension for developing a GPU accelerated library that 
implements direct and iterative methods for large linear systems. In our library we used the 
CUBLAS3 library as a BLAS GPU accelerated library. 
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1 Harris, Mark J., William V. Baxter III, Thorsten Scheuermann, and Anselmo Lastra.( 2003), Simulation of 

Cloud Dynamics on Graphics Hardware. In Proceedings of the IGGRAPH/Eurographics Workshop on Graphics 
Hardware 2003, pp. 92-101. 

2 Khronos OpenCL Working Group (2009), The OpenCL Specification - Version 1.0. The Khronos Group, 
Tech. Rep. 

3 NVIDIA (2007) CUDA – CUBLAS Library. 
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Serial iterative and direct methods for solving large linear systems 
 
The classical approach for solving a linear system using iterative methods consists in Jacobi, 

Gauss-Seidel and SOR methods that are well known are presented in many textbooks4.  
For very large linear systems, the most appropriate iterative methods are the Krylov 

techniques5. Contrary to stationary iterative methods such as Jacobi or Gauss-Seidel, Krylov 
techniques use information that changes from iteration to iteration. For a linear system b Ax = , 
Krylov methods compute the ith iterate x(i) as : 

 
d(i)1)-x(ix(i) +=  1,2,...  i =  

 
Operations involved to find the ith update d(i) are only inner products, saxpy and matrix-vector 

products that has the complexity of )( 2nΘ , so that Krylov methods are computational attractive 
comparing to the direct methods for linear systems that computes a decomposition of the matrix A 
into two triangular matrices. 

Perhaps the best known and largely used in real applications Krylov method is the conjugate 
gradient method (CG). This method is used to solve symmetric positive definite (SPD) systems. The 
idea of the CG method is to update the iterates x(i) in such a manner to ensure the largest decrease of 
the objective function bxAxx ''

2
1

− , while keeping the direction vectors d(i) A-orthogonal. This 

method can be implemented using only one matrix-vector multiplication per iteration. In exact 
arithmetic, the CG method gives the solution for at most n iterations. The complete description of the 
CG method can be found in (Golub, 1996). 

Another Krylov method for general non symmetric systems is the Generalized Minimal 
Residuals (GMRES) introduced by (Saad, 1996). The pseudo-code for GMRES is: 

 

 
The most difficult part of this algorithm is not to lose the orthogonality of the direction 

vectors v(j). To achieve this goal the GMRES method uses a Gram-Schmidt orthogonalization 
process. GMRES requires the storage and computation of an increasing amount of information, 

                                                 
4 Golub, G. H., and C. F. Van Loan, Matrix Computations (1996), Johns Hopkins Series in Mathematical 

Sciences, The Johns Hopkins University Press 
5 Saad, Y. (1996), Iterative Methods for Sparse Linear Systems, PWS Publishing Company. 

GMRES 
Given an initial solution x(0) compute r = b 
– Ax(0) 
ρ = ||r||2, v(1) = r/ ρ, β = ρ 
for k = 1,2,... until convergence 
 for j = 1,2, ... k, 
   h(j,k) = (Av(k))’v(j)  
 end 
 v(k+1) = Av(k) - ∑ =

k

j
jvkjh

1
)(),(   

 h(k+1,k) = ||v(k+1)||2  
 v(k+1,k) = v(k+1)/h(k+1,k) 
endfor 
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vectors v and matrix H. To overcome these difficulties, the method can be restarted after a chosen 
number of iterations m. The current intermediate results are used as a new starting point. 

Another Krylov method implemented by the authors is the BiConjugate Gradient method6. 
BiCG uses a different approach based upon generating two mutually orthogonal sequences of 
residual vectors and A-orthogonal sequences of direction vectors. The updates for residuals and for 
the direction vectors are similar to those of the CG method, but are performed using A and its 
transpose. The disadvantage of the BiCG method is an erratic behaviour of the norm of the residuals 
and potential breakdowns. An improved version, called BiConjugate Gradient Stabilized 
BiCGSTAB, is presented bellow: 

 

 
For the BiCGSTAB method we need to compute 6 saxpy operations, 4 inner products and 2 

matrix-vector products per iteration and to store matrix A and 7 vectors of size n. The computational 
complexity of the method is )( 2nΘ  like the other Krylov methods. The operation count per iteration 
cannot be used to directly compare the performance of BiCGSTAB with GMRES because GMRES 
converges in much less iterations than BiCGSTAB. We have implemented these iterative methods 
and run experiments to determine the possible advantages of them over the direct methods. The 
results of our experiments are presented in the next section. 

The alternative to solve a linear system  b Ax = is the direct method that consists in two 
steps: 

• First, the matrix A is factorized, LUA=  where L is a lower triangular matrix with 1s on 
the main diagonal and U is an upper triangular matrix; in the case of symmetric positive definite 
matrices, we have tLLA = . 

• Second, we have to solve two linear systems with triangular matrices: bLy =  and 
yUx = . 
The standard LU factorization algorithm with partial pivoting is (Golub, 1996): 

                                                 
6 Golub, G. H., and C. F. Van Loan, Matrix Computations (1996), Johns Hopkins Series in Mathematical 

Sciences, The Johns Hopkins University Press 

BiCGSTAB  
Given an initial solution x(0) compute r = b – Ax(0) 
ρ0 = 1, ρ1 = r(0)’r(0), α = 1, ώ = 1, p = 0, v = 0 
for  k = 1,2, ...  until  convergence 
 β = (ρk/ ρk-1)(α/ώ) 
 p = r + β(p- ώv) 
 v = Ap 
 α = ρk/(r(0)’v) 
 s = r – αv 
 t = As 
 ώ = (t’s)(t’t) 
 x(k) = x(k-1) + αp + ώs 

ώt
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The computational complexity of this algorithm is )2/2( 3nΘ . After we obtain the matrix 

factors L and U we have to solve two triangular systems: bLy =  and yUx = . These systems are 

solved using forward and backward substitution that have a computational complexity of )( 2nΘ , so 
the most important computational step is the matrix factorization. That’s why we have to show a 
special attention to the algorithms for matrix factorization. 

In practice, using actual computers with memory hierarchies, the above algorithm is not 
efficient because it uses only level 1 and level 2 BLAS operations7. As it is well-known, level 3 
BLAS operations8 have a better efficiency than level 1 or level 2 operations. The standard way to 
change a level 2 BLAS operations into a level 3 BLAS operation is delayed updating. In the case of 
the LU factorization algorithm we will replace k rank-1 updates with a single rank-k update.  

We present a block algorithm for LU factorization that uses level 3 BLAS operations. The 
nn × matrix A is partitioned as in Figure 1. The 00A  block consists of the first b columns and rows 

of the matrix A. 
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Figure 1. Block LU factorization 
 
We can derive the following equations starting from A=LU: 

000000 AUL = (1) 

100010 AUL =  (2) 

010100 AUL =  (3) 

1111110110 AULUL =+  (4) 

                                                 
7 Dongarra, J., J. Du Croz, S. Hammarling, and R. Hanson (1988): “An extended set of FORTRAN basic linear 

algebra subprograms”, ACM Transactions on Mathematical Software, 14, (1), 1-17. 
8 Dongarra, J., J. Du Croz, S. Hammarling, and I. Duff (1990): “A set of level 3 basic linear Algebra 

subprograms”, ACM Transactions on Mathematical Software, 16 (1), 1-17 

Right-looking LU factorization 
for k =1:n-1 do 

find ν with k≤ ν≤n such that ∞
= ),:(),( knkAkA ν  

A(k,k:n)↔A(ν, k:n) 
p(k) = ν 
if A(k,k) ≠ 0 then 
 A(k+1:n, k) = A(k+1:n,k)/A(k,k) 
 A(k+1:n,k+1:n) = A(k+1:n,k+1:n) - A(k+1:n, k) 

A(k k+1:n)
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Equations (1) and (2) perform the LU of the first b columns of the matrix A. Thus we 
obtain 00L , 10L  and 00U  and now we can solve the triangular system from equation (3) that 

gives 01U . The problem of computing 11L  and 11U reduces to compute the factorization of the 

submatrix 01101111' ULAA −=  that can be done using the same algorithm but with '11A  instead of 
A. The block LU factorization algorithm can now be derived easily: suppose we have divided the 
matrix A in column blocks with b columns in each block. The complete block LU factorization 
algorithm is given below. 

 

The process of factorization is shown in Figure 2. The factorization of the current column 
block is done with the usual BLAS 2 operations and the active part of the matrix A will be updated 
with b rank-one updates simultaneously which in fact is a matrix-matrix multiplication (level 3 
BLAS). If bn >>  almost all floating point operations are done in the matrix-matrix multiplication 
operation.  

Block LU factorization 
for kb =1 to n-1 step b do 
 bf = min(kb + b – 1, n) 
 {LU factorization of A(kb : n, kb : bf ) with BLAS 2} 
 for k = kb to bf do 
  find k such that 

∞
= ),:(),( iniAikA  

  if i ≠ k then 
   swap rows i and k 
  endif 

  A(i+1:n, i) = A(i+1:n, i)/A(i,i) 
  A(i+1:n, i+1: bf) = A(i+1:n, i+1: bf ) - A(i+1:n, i) A(i, i+1: bf) 
 endfor 

 {Let 
~
L  be unit lower triangular matrix bb×  stored in ):,:( fbfb bkbkA } 

 Solve triangular systems ):1,:(
~

nbbkAZL ffb +=  
 Update ZnbbkA ffb ←+ ):1,:(  
 {Delayed updating} 
 ):1,:():,:1():1,:1():1,:1( :: nbbkAbknbAnbnbAnbnbA ffbfbfffff ++−++=++  
endfor 
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Figure 2. Block LU factorization with BLAS 3 operations 
 
Cholesky factorization consists in finding the factorization of the form A = LLT where A is a 

symmetric positive definite (SPD) matrix. Figure 3 shows the partitioning of matrices A and L. 
 
   A_11    * 
A =   
   A_21 A_22 
 
 
 
   L_11    0 
L =   
   L_21 L_22 

 
Figure 3. The partitioning of matrices A and L. 
 
From A = LLT we can derive the following relations :  
A11 = L11L11

T 
L21L11

T = A21 
A22 – L21L21

T = L22L22
T 

 
If matrix L will overwrite the inferior triangle of A, then the Cholesky factorization consists in 

the following three computations:  
A11 ← L11 = Cholesky(A11) 
A21 ← L21 = A21L21

-T 
A22 ← A22 –L21L21

T 
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Parallel implementation of the direct and iterative algorithms using CUDA 
Our library implements LU and Cholesky factorization as directs methods and Jacobi, Gauss-

Seidel, CG, GMRES and BiCGSTAB iterative methods. 
The general flow of the solver implemented in our library is: 
• Allocate memory for matrices and vectors in the host memory; 
• Initialize matrices and vectors in the host memory; 
• Allocate memory for matrices and vectors in the device memory; 
• Copy matrices / vectors from host memory to device memory; 
• Define the device grid layout: 
o Number of blocks 
o Threads per block 
• Execute the kernel on the device; 
• Copy back the results from device memory to host memory; 
• Memory clean up. 
 
We’ve used CUBLAS library in the implementation of the direct and iterative algorithms for 

performing BLAS operations. We also implemented the same algorithms in a single threaded 
program developed in C and run on CPU. The CPU library uses ATLAS9 as a high performance 
BLAS implementation. 

 
Results 
 
We’ve tested our direct and iterative solvers for both single precision and double precision 

floating point numbers. For our tests we used a computer with Intel Core2 Quad Q6600 procesor 
running at 2.4 Ghz, 4 GB of RAM and a NVIDIA GeForce GTX 280 graphics processing unit (GPU) 
with 240 cores running at 1296 MHz, 1GB of video memory and 141.7 GB/sec memory bandwith. 
The operating system used was Windows Vista 64 bit. 

We compared the results obtained using the CUDA code with the single threaded C 
implementation run on CPU. The CPU implementation of the direct and iterative algorithms used the 
optimized ATLAS library as a BLAS implementation. This gives better performances than a 
standard reference implementation of the BLAS. 

Table 1 shows the speedup obtained by the C-CUDA implementation of the iterative solvers 
compared with the traditional CPU code for single precision floating point numbers and table 2 
shows the speedup for double precision numbers. From the results presented below one can see that 
GPU outperforms CPU for numerical computations.  

Comparing the results for each method, it can be noticed that BiCGSTAB has better 
performances than the other methods. For GMRES, in our experiments we restarted the method after 
35 iterations. The tolerance for the solution was fixed at 10-4 for all methods. For our experiments we 
have considered linear systems containing between 2000 and 20000 variables. 

Table 3 shows the speedup of the CUDA implementation of the direct method for linear 
systems compared with a single threaded C implementation (the standard block-level implementation 
that can be found in LAPACK). We considered linear systems with 500 to 3500 equations. 

Our performance results show the net advantage of GPU computing compared to the classical 
CPU code. The results also emphasize the advantage of the iterative solutions compared with the 
direct solution. Another advantage of using CUDA programming model is that the code can be easier 

                                                 
9 Whaley, R. C., A. Petitet, and J. Dongarra (2001), “Automated Empirical Optimization of Software and the 

ATLAS project”, Parallel Computing, 27(1-2), 3-35 
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read and support. The major drawback of CUDA is that it is only available for NVIDIA devices. A 
port of our library to OpenCL is intended for the future. 

 
 
Table 1. Speedup of the CUDA library for single precision FP 
Matrix 
dimension 

Speedup 
Jacobi Gauss-Seidel GMRES(35) BiCGSTAB 

2000 67.4 69.3 78.3 82.2 
4000 56.2 65.5 81.8 84.5 
8000 68.3 67.4 80.1 81.9 
12000 66.7 68.4 81.4 84.1 
16000 71.1 69.2 79.3 86.0 
20000 72.8 69.9 81.3 86.9 

 
 
Table 2. Speed up for double precision FP 
Matrix 
dimension 

Speedup 
Jacobi Gauss-Seidel GMRES(35) BiCGSTAB 

2000 35.2 36.1 39.6 41.7 
4000 36.1 36.0 41.2 42.3 
8000 29.1 35.2 41.6 43.6 
12000 33.6 37.8 40.5 43.9 
16000 32.3 35.9 42.8 44.0 
20000 35.6 37.1 43.2 46.1 

 
 
 
Table 3. The speedup of the direct method based on LU factorization for double precision 

Matrix dimension C-CUDA 
500 8.99 
1000 12.45 
1500 11.41 
2000 16.78 
2500 16.23 
3000 14.39 

 
 
 
Table 4. The speedup of the direct method based on Cholesky factorization for SPD matrices 

double precision 
Matrix dimension C-CUDA 
500 13.50 
1000 19.75 
1500 19.71 
2000 23.17 
2500 24.45 
3000 22.585 
3500 23.90 
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Conclusions 
 
We developed a C-CUDA library that implements the direct method with LU and Cholesky 

factorization and Jacobi, Gauss-Seidel and non-stationary iterative methods (GMRES, BiCGSTAB). 
The matrix-vector and matrix-matrix computations were done using CUBLAS routines. We 
compared the performance of our CUDA implementation with classic programs written to be run on 
CPU. Our performance tests show speedups of approximately 80 times for single precision floating 
point numbers and 40 times for double precision for the iterative methods and about 10-25 for the 
direct method with double precision FP. The lower figures of the speedups for direct methods may 
come from the memory bandwidth.  

These results show the immense potential of the GPU accelerated numerical computations. In 
the future we intend to extend our direct and iterative solver library and to port it to OpenCL. 
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