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Abstract 

In the crisp regression models, the differences between observed values and calculates ones are suspected to be 

caused by random distributed errors, although these are due to observation errors and an unappropriate model 

structure. 
So, the fuzzy character of model prevails. 

The Fuzzy linear regression models (FLRM) are, roughly speaking, of two kinds:  

Fuzzy linear programming (FLP) based methods and Fuzzy least squares (FLS) methods. 

The FLP methods have been initiated by H.Tanaka (1982) and developed by H. Ishibuchi et al. The classical 

FLR model, 
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has a explained Fuzzy triangular variable, Y, Fuzzy triangular coefficients {Aj} and crisp explanatory variables 

{Xj}: the parameters {Aj} of the model are estimated by minimizing the total indetermination of the model, so 

each data point lies within the limits of the response variable. 

 In a large number of situations the prediction interval of the FLR model were much less than the 

interval obtained applying classical the Multiple linear regression model (see V.M. Kandala – 2002, 2003). 
 However, this approach is somehow heuristic; on the other side, the LP model complexity overmuch 

increases as the number of data points increases. 

 The FLS approach (P. Diamond; Miin-Shen Yang, Hsien-Hsiung Liu – 1988 et al) is an extension of 

the classical OLS method, using various metrics defined on the space of the fuzzy numbers. 

 A significant number of recent works (McCauley- Bell (1999), J. deA. Sanchez and A. T. Gomez (2003) 

who used FLS to estimate the term structure of interest rates) deals with models with a fuzzy output, fuzzy 

coefficients and a crisp input vector. 

 All the fuzzy components are symmetric triangular fuzzy numbers: the main idea of the method is to 

minimize the total support of the fuzzy coeficients. Sometimes, different restrictions occur. 

In our paper, we intend to build some examples for the P. d’Urso and T. Gastaldi models, that allow a 
comparative study on various options. 

(Pierpaolo d’Urso & Tommaso Gastaldi in: A least square approach to fuzzy linear regression, Comp. Stat. & 

Data Analysis 2000)  

Keywords: fuzzy linear regression; fuzzy metrics; Gastaldi - d’Urso equations; fuzzification; doubly linear 

adaptative fuzzy regression model. 

Introduction

The basic notion in the fuzzy theory is the fuzzy set or fuzzy number: in everyday 

mathematics, the corresponding notion is that of a set (or: crisp set). For a crisp set A, every element 
of the universe belongs or not to A, while for a fuzzy set A, every element of the subsequent universe 

has a degree of appurtenance to A, say, a number in the unit interval [0;1]. 
 In this context, if an element x has the degree of appurtenance equal to 0, it “don’t” belongs 

to A; if the degree of appurtenance equals to 1, then “sure“ that x is an element of A; for the 

intermediate degrees of appurtenance e, say 70,)x(  the appurtenance is 70% possible and 30% 

not possible (for this reason, the fuzzy theory interferes with the so – known “possibility“ theory). 

***
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 For a crisp set A, belonging to an universe X, the characteristic function 

};{X:)x(A 10 is given by 

Axif,

Axif,
)x(A

0

1

In the fuzzy case, the characteristic function, dubbed as the membership function is simply 

every function ];[X:)x(A 10 .

However, a series of special functions are routinely used, as in the following: 

the triangular fuzzy numbers (Zimmermann): he’s considering two continuous, 

decreasing shape functions, ],[R:, 10  with 1)0(;0)1(;1)0(;0)1( ;

then, a triangular fuzzy number, denoted by )b,a,m( has the membership function A(x) given 

by 

mxif,
b

mx
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Here, m is called the center of )b,a,m( , a is the left spread and b is the right spread of 

)b,a,m( . If a = b, then )b,a,m(  is called a symmetrical triangular fuzzy number that 

will be denoted simply by )a,m( .

In most applications, the shape functions ,  are supposed to be x)x(;x)x( and

consequently, the membership function becomes  
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As an alternative, for an exponential fuzzy number, the membership function has the shape 

below:
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Here, the spread is given by the positive 0 .

the trapezoidal fuzzy number (D. Ralescu; L. A. Zadeh; Dubois), denoted by  

),,b,a(  has the membership function A(x) :R  [0;1] given by 

otherwise,

bxb,
xb

bxa,

axa,
ax

)x(A

0
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For the symmetrical triangular fuzzy numbers (TFN), an Euclidean distance is available: 

let )a,m(B,)a,m(A 2211 be TFN: then, the Euclidean distance between A, B is 

2

21

2

21 )aa()mm(dAB .

If A, B are non-symmetrical, )b,a,m(B,)b,a,m(A 222111 then, for 

0321 p,p,p suitable defined weights, 1321 ppp , the distance ABd can be compute by 

using the next formula: 

2

213

2

212

2

211 )bb(p)aa(p)mm(pdAB

PAPER CONTENT: 

Fuzzy linear regression 

Let’s take into account the Linear Fuzzy regression model Y = (a0, r0) + (a1, r1)X, with: 

X – the explanatory variable, Y – the response variable 

(a0, r0), (a1, r1) the triangular symmetric fuzzy coefficients to be estimated 

X is supposed to be a crisp variable, Y = (c, s) a TSFN variable. 

Remember that a triangular symmetric fuzzy number (TSFN), denoted by x = ( a , r ), has the 

membership function A(x): R  [0;1] given by 

otherwise,

raxaif,
r
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 The spread of x is then equal to 2a: the centre of x is a. 

The Tanaka approach, referred to as possibility regression, was to minimize the fuzziness of 
the model, represented by the total spread of the fuzzy coefficients. So, the method becomes an 

extension of the classical OLS method. 
 To illustrate this, let’s consider the data in Table 1 below: 

TABLE 1:  

Yi Xi

y1 : ( 5 ; 2 ) = ( c1 ,s1 ) x1 = 1

y2 : ( 8 ; 3 ) = ( c2 ,s2 ) x2 = 2

y3 : ( 10 ; 2 ) = ( c3 ,s3 ) x3 = 3

With the linear regression model: Y = ( a0 , r0 ) + ( a1 , r1 )X

The required approximations become  

)r,a(3)r,a()2;10(

)r,a(2)r,a()3;8(

)r,a()r,a()2;5(

1100

1100

1100

From here the OLS conditions are derived 

for the centers: })10a3a()8a2a()5aa({min
2

10

2

10

2

10

for the spreads: })2r3r()3r2r()2rr({min 2

10

2

10

2

10
.

The solutions are: 
0r

3/7r
;

2/5a

3/8a

1

0

1

0
, so the estimated model becomes 

)33,2;67,2(X5,2Y)33,2;67,2(X)0;5,2(Y

Having zero spread, the X coefficient is a crisp number. 

This equation allow us to perform interpolations, for example 

x = 2,5 )33,2:92,8()33,2;67,2()0;25,6()3/7;3/8(5,2
2

5
y .

For a large number of explanatory variables, the matrix approach is more suitable. To 

illustrate this let’s consider the data in TABLE 2. 
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TABLE 2: 

sample

Y X1 X2 … Xp the 

independent
term 

1 y1 x11 x12 … x1p 1

2 y2 x21 x22 … x2p 1

… … … … … … … 

n yn xn1 xn2 … xnp 1

with: y1 = ( c1 , s1 ); y2 = ( c2 , s2 ) ;…; yn = ( cn , sn ) and X1,…, Xn be crisp variables; 
the linear regression function will be 

Y = ( a0 , r0 ) + ( a1 , r1 )X1 +( a2 , r2 )X2 + … + ( ap , rp )Xp

The matrix elements of the model will be the next: 

the n x ( p + 1 ) data matrix 

1x...xx

...............

1x...xx

X

np2n1n

p11211

the components of the TSFN Y’s data: 

The n x 1 centers vector, 

nc

...

c

c

C
2

1

and the n x1 spreads vector 

ns

...

s

s

S
2

1

the (p + 1) x 1 vectors of the TSFN’s coefficients, 

The centers , 

0

1

a

a

...

a

a
p

^

and the spreads 

0

1

^ ...

r

r

r

r
p

The OLS method gives  

S'X)X'X(r;C'X)X'X(a
1

^
1

^

Let, for example, be the data in TABLE 3 below: 
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TABLE 3:

the

sample

Y X1 X2

1 (3;2) 2 1 

2 (5;1) 1 3 

3 (7;3) 3 2 

We’ll apply the regression model : Y = ( a0 , r0 ) + ( a1 , r1 )X1 +( a2 , r2 )X2

According to the previous notations and formula, 

0

0

1

3

2

2

3

1

2

7

5

3

123

131

112
^^

r;aS;C;X

so, the estimated model will be : 
^

Y  = ( - 3 , 0 ) + ( 2 , 1 )X1 + ( 2 , 0 )X2 or 

^

Y  = - 3 + ( 2 , 1 )X1 + 2X2 . 

Here, the number of parameters being equal to the number of conditions, the estimated values 
^

Y are equal to the observed ones, 

x1 = 2 ; x2 = 1 11

^

1

^

)2;3()0;2()2;4()0;3( yyy

x1 = 1 ; x2 = 3 
22

^

2

^

)1;5()0;6()1;2()0;3( yyy

x1 = 3 ; x2 = 2 33

^

3

^

)3;7()0;4()3;6()0;3( yyy .

If there are more data than model parameters, a non-zero error can occur, as shown in the 
example below: 

Let’s consider the data in TABLE 4, subject to the model  

Y = ( a0 , r0 ) + ( a1 , r1 )X1 +( a2 , r2 )X2

TABLE 4:

the

sample

Y X1 X2

1 (4;3) 2 1 

2 (7;2) 3 2 

3 (9;5) 2 3 

4 (8;2) 4 2 

The corresponding matrix elements will be 
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4

1

09,1

S'X)X'X(r;

0

5,2

727,0

C'X)X'X(a

2

5

2

3

S;

8

9

7

4

C;

124

132

123

112

X

1
^

1
^

The estimated regression function becomes
^

Y  = ( 0 ; 4 ) + ( 0,727 ; -1,09 )X1 + ( 2,5 ; 1 )X2.

Comparing the observed values with the estimated values, we obtain 

x1 = 2 ; x2 = 1 11

^

1

^

)82,2;954,3( yyy

x1 = 3 ; x2 = 2 22

^

2

^

)73,2;181,7( yyy

x1 = 2 ; x2 = 3 33

^

3

^

)82,4;954,8( yyy

x1 = 4 ; x2 = 2 44

^

4

^

)69,1;91,7( yyy

A better approach is that of Tanaka’s symmetrical Doubly Linear Adaptive Fuzzy Regression 

Model, whose central idea is that the calculated spreads depend linearly to the calculated centers. 

In this respect, for 

1

...

1

1

1,

s

...

s

s

S;

c

...

c

c

C;

a

a

...

a

a
~

n

2

1

n

2

1

0

p

1

 - “n“ dimensional vector 

We put  

the calculated centers: aXC
^

and, accordingly, the calculated spreads: d1bCS
~^^

The optimum condition will be: (minim)

2
^

2
^

SSCC .

The next two ways to perform this: 
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the “Doubly Linear“ method, in which the vector a is estimated first using OLS method, so 

C'X)X'X(a 1
^

, the parameters of the Minimum model being the scalars b, d; 

the d’Urso and Gastaldi version, in which the unknown parameters are a, b, d. 

As an example of applying the Doubly Linear model, let’s consider the data in TABLE 5 
below:

TABLE 5:

the

sample

Y X

1 ( 8 ; 3 ) 1 

2 ( 5 ; 2 ) 2 

3 ( 9 ; 4 ) 3 

the corresponding model being the next 

( ci ; si ) = ( a0 ; r0 ) + ( a1 ; r1 )xi; i = 1,2,3 

For

0

1

a

a
a;

13

12

11

X;

4

2

3

S;

9

5

8

C ,

There arrive that 

4d)aa3(b

2d)aa2(b

3d)aa(b

SS;

d)aa3(b

d)aa2(b

d)aa(b

S

;

9aa3

5aa2

8aa

CC;

aa3

aa2

aa

C

01

01

01
^

01

01

01
^

01

01

01
^

01

01

01
^

Putting 
33,6

5,0
C'X)X'X(a

1
^

 there obtains a1 = 0, 5; a0 = 6, 33 and consequently 

83,7

33,7

83,6

C
^

.
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Finally, 

4db83,7

2db33,7

3db83,6

SS
^

.

From the condition: (minim)

2
^

SS there results b = 1 and d = -4,33 . 

Having

2/1

1

2/1

SS
^

 , then 

5,3

3

5,2

S
^

 and so: 

)5,2;83,6(y
1

^

versus y1 = ( 8 ; 3 ) 

)3;33,7(y
2

^

 versus y2 = ( 5 ; 2 ) 

)5,3;83,7(y
3

^

 versus y3 = ( 9 ; 4 )

For the Gastaldi – d’Urso variant, which not necessarily lead to better results, although the 
computations volume is incomparably greater, the parameters of the optimization problem 

(minim)

2
^

2
^

SSCC

Will be a, b and d.

 According to the results of Gastaldi – d’Urso, the solutions to this problem are given by the 
equations below: 

^

3

222
^

2
^

2

^

1

~~

1
^

1
^

C'SSCnM;CnSn||S||||C||M;SCnS'CM

S'1
n

1
S;C'1

n

1
C

S'X)X'X(XS;C'X)X'X(XC
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The appropriate value of b, denoted by 
^

b , is derived from the equation  

M1b
2 + M2b + M3 = 0

Therefore

2^

^^~^
1^^^

b1

)db1bSC('X)X'X(
a;CbSd

For an already presented example, namely 

TABLE 6:

sample Y X1 X2 X3

1 ( 3; 1) 1 2 1 

2 ( 6; 2) 3 1 2 

3 ( 8; 2 ) 2 2 3 

4 ( 7; 4 ) 1 4 3 

5 (10; 3 ) 3 2 4 

From the equation: M1b
2 + M2b + M3 = 0, we derive that 309,0b1

^

 , 236,3b2

^

and finally: 

3870

0512

1060

4230

303090 111

,

,

,

,

a;,d,b
^^^

;

0638

2970

5410

4230

42242363 222

,

,

,

,

a;,d,b
^^^

By applying the relations:  
^~^^^

d1bCS;aXC , we’ll get 



1139

88122

05122

11122

58121

71120

66396

394

2394

5392

7389

11

,

,

,

,

,

S;

,

,

,

,

C  - Obviously not convenient 

072

83

661

242

222

96

3676

0267

8976

8556

12

,

,

,

,

,

S;

,

,

,

,

,

C  - This one being the feasible solution. 

In the comparative TABLE 7 below, the next are presented: 

}y{
#

i
 the values calculated using Gastaldi – d’Urso method  

{
i

^

y } the values calculated using the Doubly Linear method; 

{
i

~

y } the values calculated using the OLS method: 

TABLE 7:

i
y i

^

y
i

~

y #

i
y

( 3; 1) ( 3,14 ; 1,06 ) (3,14 ; 9,07 ) ( 6,9 ; 2,2 ) 

( 6; 2) (5,92 ; 1,95 ) (5,92 ; 10,61 ) (6,8 ; 2,24 ) 

( 8; 2 ) ( 7,83 ; 1,9 ) (7,83 ; 11,22 ) ( 7,03 ; 1,66 ) 

( 7; 4 ) ( 6,96 ; 3,96 ) ( 6,96 ; 13,29 ) ( 6,37 ; 3,8 ) 

(10; 3 ) ( 10,18 ; 3,07 ) ( 10,18 ; 13,05 ) ( 6,9 ; 2,07 ) 

Of course, not always the effectiveness of this methods is that in the Table 7: this 

effectiveness heavily depends on input data. 
According to our information, there is no theorem stating the adequacy of each method. 

Conclusion:  

The basic idea of the paper is to analyze the influence of the spreads on the accuracy study. 
In computing fuzzy regression – as well as other categories – there observe an automatically 

growing spreads with increasing number of fuzzy parameters. 
Responsible for this shortcoming are the very definitions of the fuzzy operations itself. Major 

complications are arising when d’Urso - Gastaldi attempts to keep under control the spreads, by 

correlating these last with the other characteristics. 
In our view, another approach consists in modifying the basic definitions as follow: 
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the addition : )};{max;ba();b();a(

the multiplication : )};{max;ba();b();a(

By adopting this viewpoints, we’ll have the distribution, 

);c();a();b();a(]);c();b([);a(

thus this concept is a natural one. 

On the other hand, is true that analytical optimization methods are difficult to carry out. 

Our team is still trying to find solutions to these problems in occasion of studying some major 
economic applications. 
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